“9월 모의평가 평이 수준…수능 대비 만전 기해야”
2014-09-03 16:16
아주경제 이한선 기자= 3일 치러진 9월 모의평가의 난이도가 전반적으로 평이했다는 평가가 나오는 가운데 수능 대비에 만전을 기해야 할 필요가 있다는 조언이 나왔다.
김희동 진학사 입시전략연구소장은 “9월 모평은 수능으로 가는 징검다리 역할을 하는 매우 의미 있는 시험이긴 하지만 결과에 집착하기보다는 내용에 대한 명확한 이해가 필요한 시험"이라며 “9월 말부터 진행되는 논술이나 적성 등 대학별고사에 과도하게 집중해 수능에 대한 감을 잃어버리는 것은 곤란하고 주변의 소리에 휘둘리기보다는 자신을 믿고 남은 기간 끝까지 수능준비에 만전을 기하는 것이 효율적인 대입 준비방법임을 잊지 말아야 한다”고 밝혔다.
9월 수시 원서접수가 마무리되는 시점부터는 실제 수능과 출제경향, 난도가 가장 유사하다 할 수 있는 9월 모평에 대한 복습이 반드시 이뤄져야 하지만 실제 수능이 아니기 때문에 모평 가채점 결과에 일희일비할 필요는 없다는 게 김 소장의 지적이다.
시험결과에 집중하기보다는 앞으로 남은 시기에 어떻게 마무리 학습을 할지에 대한 기준에 의미를 두고 영역별 학습을 할 필요가 있다.
모평 이후 수능까지 어떻게 준비하느냐에 따라 수능 결과가 많이 달라질 수 있고 많은 대학들이 수능 최저학력기준을 적용해 수능 성적이 정시뿐만 아니라 수시에서도 중요하기 때문이다.
수시의 논술이나 적성 같은 대학별 고사에 모든 것을 걸고 수능 학습을 등한시하기보다 수능학습을 우선적으로 하는 것이 좋다는 조언이다.
수능 학습 계획을 먼저 세우고 가용한 시간 범위에서 대학별 고사를 준비해야 한다.
국어영역은 A형은 지난 6월 모의고사나 작년 수능과 비슷한 난이도이고 B형의 경우는 6월 모의고사와 작년 수능에 비해서 쉽게 출제됐다. A형과 B형의 절대적인 난이도 차는 크게 발견되지 않았다.
A형 시험에서는 현대소설(김승옥 ‘무진기행’)과 그 작품을 시나리오로 각색한 작품(김승옥, ‘안개’)을 제시문으로 동시에 실었다.
앞으로 이러한 실험적인 제시문 구성에 관심을 가져야 할 것으로 보이고 A형에서는 법과 정의, B형에서는 직접민주주의 지문이 선정된 가운데 우리나라 현실과의 관련성을 염두에 둔 것으로 보여 주목된다.
수능을 앞둔 시점에서 수험생들은 6월, 9월 모의평가 시험지를 펴놓고 각 영역별 출제방식을 숙지하고 약한 부분이 무엇인지를 두 시험지를 통해 파악해야 한다.
EBS 각 교재별로 올해 6월과 9월에 출제된 독서(비문학) 지문과 문학 작품을 체크하고 최근 2~3년 사이 출제됐던 작품과 작가들도 제외하면서 학습의 범위를 줄이는 지혜를 발휘해야 한다.
상위권 학생의 경우는 EBS 교재만이 아니라 여타 출판사의 다른 교재를 한 권 정도 선정해 문학 작품의 학습 범위를 높이는 것도 필요하다.
이번 9월 모의평가 수학 A형은 올해 6월 모의평가 A형에 비해 다소 어렵고 전년도 수능 A형과 비슷하게 출제됐다.
올해 6월 모의평가가 각 단원의 기본 개념을 이해하고 있는지에 대해 묻는 문항이 많았다면, 9월 모의평가는 함수의 그래프 해석 등 기하와 연관돼 출제된 문항들이 눈에 띄었다.
21번은 주어진 조건에 맞도록 그래프의 개형을 파악하고 이것을 통해 식으로 표현해야 하는 문제다.
기존 시험의 경우 미분에서 주로 계산 문제가 나온 반면 이번 9월 모의평가에서는 함수의 그래프를 다루는 문제라 수험생들이 당황했을 가능성이 있다.
B형은 올해 6월 모의평가 B형과 난이도가 비슷하고 전년도 수능 B형보다 쉽게 출제됐다.
변별력을 위해 출제된 30번의 경우 함수가 구체적으로 정해지지 않은 상태에서 감소하고 연속인 것을 이용해 주어진 조건만으로 함수를 추정하면서 이것을 통해 적분을 할 줄 알면서 조건(나)가 의미하는 바를 해석할 줄 알아야 이 문제를 풀 수 있다.
이번 9월 모의평가에서는 전년도에 치러진 모평이나 수능에 비해 EBS 교재와의 눈에 띄는 연계가 보이지 않았다. 전년도에는 함수의 그래프나 함수식이 거의 동일하게 출제됐지만 이번 9월 모의평가에는 없었다.
교육과정에서 다루는 개념과 공식을 능수능란하게 다룰 줄 알아야 변별력 있는 고난도 문항을 풀 수 있다.
이번 9월 모의평가는 함수의 그래프를 다룬 문항이 있었고 함수의 그래프 개형은 항상 정의를 명확히 알아야만 그릴 수 있어 교과과정에서 배운 함수의 정의 및 성질을 정확히 알고 문제에 주어진 조건이 그래프의 개형에 어떤 영향을 미치는지 꼼꼼히 알아두는 습관을 길러야 한다.
그동안 미분을 단순한 계산 도구로만 공부하고 그래프 그리기에 소홀히 한 학생이라면, 수능에서도 어려움이 예상되는 가운데 미분법과 적분법 문제를 그래프로 해석하려는 시도가 필요하다.
전 영역의 개념을 다시 한 번 점검하고 기출 문제와 관련시켜 철저히 학습해야 하고 문제를 왜 틀렸는지, 부족한 개념은 무엇인지, 약점 유형은 무엇인지 파악해 이를 보완하는 데에 신경써야 한다.
이번 9월 모의평가 영어 영역은 듣기 및 말하기 17문항을 포함해 총 45문항이 출제됐다.
전반적으로 지난해 수능 영어 B형보다는 다소 쉬웠지만 올해 6월 모의평가보다는 상대적으로 어려운 수준으로 만점자가 5.37%였던 6월 모의평가와는 다르게 길어진 지문, 고난도 어휘, 다소 까다로운 문장 구조 등으로 난이도를 조정하려는 의도를 엿볼 수 있었다.
학생들이 가장 까다롭게 여기는 빈칸 추론 문제가 6월 모의평가에 이어 4문항이 출제돼 지난해 수능 B형의 7문항에서 크게 줄어든 것이 특징이다.
고난이도 유형에 속하는 문장 삽입 문제가 지난해 수능 B형과 올해 6월 모의평가의 1문항에서 이번 9월 모의평가에서는 2문항으로 늘어나게 되면서 다양한 고난이도 유형에 대한 꾸준한 학습의 필요성이 강조됐다. 고난이도 및 3점짜리 문제들의 해결 여부에 따라 1등급과 2등급이 나뉠 것으로 예상돼 한 가지 유형에 집중된 학습이 아닌, 전체 유형에 대한 균형 잡힌 학습 계획을 세우고 있는지 다시 한번 점검할 필요가 있다.
어법 문제는 현재분사, 수동태, 수일치 등 기본적인 내용을 확인하는 방식으로 한 문항이 출제됐지만 어법은 지문의 내용을 올바르게 이해하기 위한 기본 바탕으로 꾸준한 학습이 필요하다.
‘감정 이입과 객관성 유지’에 관한 32번, ‘벌의 색깔에 따른 선호도’를 다룬 33번, ‘긍정의 효과’를 다룬 36번, 그리고 ‘생태계에서의 경쟁과 균형’이라는 소재를 다룬 42번 등에서 확인할 수 있는 바와 같이, 인문·사회·과학 등 기초 학문 분야의 소재가 지문으로 등장하고 있는 가운데 다양한 독해 지문을 통해 꾸준하게 배경 지식을 쌓는다면 변별력을 요구하는 문제들을 당황하지 않고 차분하게 해결할 수 있다.
‘쉬운 수능’ 기조에 따라 실시된 9월 모평의 경우 전반적으로 영역별 난도는 평이한 것으로 예측된다.
9월 모평이 평이한 경우 다수의 수험생들이 수시모집에서 적정지원보다는 다소 상향지원을 하는 경향을 보이지만 수시모집의 수능 최저학력기준으로 활용되는 등급은 상대적이라는 것을 염두에 둬야 한다.
9월 모평이 끝난 후 가채점을 통해 가장 먼저 해야 할 일은 정시지원권을 알아보고 정시지원권을 통해 수시모집의 수능 최저학력기준 충족여부를 통한 수시모집 지원 여부와 전략을 신속하게 결정하는 일이다.
일반적으로 수시모집에는 정시지원 가능 대학과 비슷하거나 약간 높여 쓰라는 조언이 나오는 가운데 가채점 결과를 통해 정시지원 가능대학을 찾아 볼 필요가 있다.
다른 점수보다 백분위를 통해 큰 범주로 지원대학을 찾고 9월 모평 가채점 성적뿐 아니라 지난 6월 모평 결과도 참고해 영역별 등락도 함께 살펴봐야 한다.
올해의 경우 정시모집에서 수능만으로 선발하는 대학이 많아 좀 더 명확한 판단이 필요하다.
9월 모평 가채점 결과를 통해 큰 범주에서 정시지원권을 찾았다면 수능 최저학력기준 충족 여부를 통한 수시모집 지원 여부와 전략을 수립해야 한다.
가채점 결과를 통해 판단하는 것으로 실제 결과가 나오기 전까지는 등급의 변화가 있을 수 있어 당장 수시지원 희망대학의 수능 최저학력기준을 충족했다고 해서 안심하고 지원하기에는 무리가 있다.
본인의 점수가 해당 대학의 수능 최저학력기준에 여유있게 충족하는 지를 판단해야 하고 학생부교과전형과 논술전형에 지원하고자 하는 수험생들의 경우에는 더 고민할 필요가 있다.